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The conservation of elusive species relies on our ability to obtain unbiased estimates of their abundance trends. Many 
species live or breed in cavities, making it easy to define the search units (the cavity) yet hard to ascertain their occupancy. 
One such example is that of certain colonial seabirds like petrels and shearwaters, which occupy burrows to breed. In order 
to increase the chances of detection for these types of species, their sampling can be done using two independent methods 
to check for cavity occupancy: visual inspection, and acoustic response to a playback call.

This double-detection process allows us to estimate the probability of burrow occupancy by accounting for the 
probability of detection associated with each method. Here we provide a statistical framework to estimate the occupancy 
and population size of burrow-dwelling species. We show how to implement the method using both maximum likelihood 
and Bayesian approaches, and test its precision and bias using simulated datasets. We subsequently illustrate how to extend 
the method to situations where two different species may occupy the burrows, and apply it to a dataset on wedge-tailed 
shearwaters Puffinus pacificus and tropical shearwaters P. bailloni on Aride Island, Seychelles.

The simulations showed that the single-species model performed well in terms of error and bias except when detection 
probabilities and occupancies were very low. The two-species model applied to shearwaters showed that detection 
probabilities were highly heterogeneous. The population sizes of wedge-tailed and tropical shearwaters were estimated at 
13 716 (95% CI: 12 909–15 874) and 25 550 (23 667–28 777) pairs respectively.

The advantages of formulating the call-playback sampling method statistically is that it provides a framework to 
calculate uncertainty in the estimates and model assumptions. This method is applicable to a variety of cavity-dwelling 
species where two methods can be used to detect cavity occupancy.

Estimating abundance is central to most ecological studies. 
In the context of conservation, abundance estimates pro-
vide baseline information about the status of a population 
(Sutherland et al. 2004, Bibby et al. 2012). They allow the 
tracking of temporal changes and the study of habitat pref-
erences, and help assess the impact of environmental and 
land use changes (Gregory et al. 2004). To meet this need, 
a plethora of field and statistical methods have been devised 
to improve abundance estimates, adapted to the habits of a 
variety of species. Central to this exercise is accounting for 
the widespread problem of imperfect detection (Borchers 
et al. 2002, Royle et al. 2005, Scott et al. 2009).

For the vast majority of populations, be it due to logistical 
constraints or species elusiveness, it is impossible to directly 
count all the individuals present at a given time. Unbiased 
estimates of population abundance therefore require estimat-
ing the probability of detection of individuals present in the 
population (MacKenzie et al. 2005). This can be estimated 
from a variety of sampling designs like double observer 

counts (Forcey et  al. 2006), distance sampling (Buckland 
et  al. 2001), repeated counts (Royle and Nichols 2003, 
Kéry et al. 2005) or capture–mark–recapture (McCrea and 
Morgan 2014). Modern statistical methods can use these 
designs to jointly estimate species detection probabilities 
and abundance, thus accounting for the uncertainty of both 
estimates. Despite this, it is not uncommon for practitioners 
to independently estimate the detection probability using a 
subset of data, and later apply it as a correction factor to 
individual counts (Azuma et al. 1990, Zielinski and Stauffer 
1996, Bodkin and Udevitz 1999, Burger and Lawrence 
2001, Thompson 2002, Kissling et  al. 2006, Soanes et  al. 
2012). This ad hoc application of correction factors, how-
ever, makes it difficult to produce abundance confidence 
intervals that account for the uncertainty in the detection 
factor estimation. In the worst cases, ignoring uncertainty in 
correction factors can lead to grossly misleading conclusions, 
such as was illustrated in a recent re-analysis of tiger recovery 
(Gopalaswamy et  al. 2015). Even more problematic is the 
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fact that these corrections assume constant detection prob-
abilities over time and space. If that is not the case, this will 
strongly hinder spatiotemporal comparisons.

In species that inhabit dens or burrows, estimates of pop-
ulation densities rely on our ability to infer the proportion 
of those cavities that are inhabited by a breeding pair. This is 
the case for burrow nesting seabirds, which have a tradition 
of correcting for detectability through ad hoc application 
of correction factors (Warham 1996, Ratcliffe et  al. 1998, 
Burger and Lawrence 2001, Scott et al. 2009). For example, 
some studies have used multiple visits to ascertain occupancy 
in a subsample of burrows, calculated an average occupancy 
rate and applied it to the total number of burrows of the sam-
ple area (Rayner et al. 2007, Whitehead et al. 2014). Other 
studies use the playback method, which combines visual and 
acoustic detection, and calculate a playback response rate 
which, applied to the number of burrows with undetected 
birds in it, gives an estimate of the proportion of apparently 
empty burrows that contained an unresponsive bird (James 
and Robertson 1985, Burger and Lawrence 2001). While 
some studies use both visual and acoustic detection methods 
only on a subset of data to later apply the calculated playback 
response rate to surveys using only acoustic sampling (James 
and Robertson 1985), others use both detection methods for 
all burrows (Burger and Lawrence 2001). In the first case, 
the number of occupied burrows is calculated as:
N n pR R
 = 	 (1)

where nR is the number of burrows in which a bird responded 
to the playback call, and pR is the response rate calculated 
from the subsample as the proportion of visible birds that 
responded to the playback (James and Robertson 1985). 
When both methods are used for all burrows, the total num-
ber of occupied burrows N is subsequently estimated using 
the following formula:

N n n
n

nV
R

VR

  0
0 	 (2)

where nV is the total number of birds seen, n0 is the number 
of burrows with undetected birds (not seen nor heard), nRo is 
the number of birds that responded but were not seen, and 
nVR is the number of birds that were seen and responded.

While the above methods address the bias in our esti-
mates of burrow occupancy by accounting for imperfect 
detection, they do not provide measures of uncertainty in the 
estimate and do not overcome the problem that population 
changes are confounded by changes in detection probability 
over time and space. Because uncertainty and the ability to 
make spatiotemporal comparisons in population estimates 
are key to the management of species, it is clearly desirable 
to formalize the joint estimation of detection and abundance 
probabilities in a formal statistical framework.

The aim of this article is to provide a statistical frame-
work for the analysis of playback census. First, we derive 
the necessary likelihood functions. Second, we will imple-
ment them on simulated data using both maximum likeli-
hood and Bayesian approaches, in order to assess the bias 
and precision of the occupancy estimates. Third, we extend 
the approach to cases where a burrow can be occupied by 
two different species. Finally, we implement the approach 
using data on two species of burrow-nesting seabirds, the 

wedge-tailed Puffinus pacificus and the tropical shearwater P. 
bailloni, breeding on Aride Island, an Important Bird Area 
of the Seychelles (Rocamora and Skerrett 2001). Although 
particularly useful for the sampling of burrow-nesting sea-
birds, the approach is applicable to any species where two 
independent methods of detection (e.g. passive sighting and 
active luring) can be applied to estimate the occupancy of an 
animal’s dwelling (e.g. crabs in burrows, fish in shelters, or 
woodpeckers in tree-holes).

Material and methods

Statistical framework

Consider a set of m burrows that may be occupied by the 
species of interest. For each burrow, the detection procedure 
occurs by two independent methods with different detec-
tion probabilities: visual examination and playback. The 
data is arranged in a matrix X of m rows and two columns, 
whereby for each burrow i, elements xi,1 and xi,2 contain a 
0 or 1 depending on whether an individual was detected or 
not with either the first (visual) or second (playback) method 
respectively. For example, an individual (or pair) that was not 
seen but heard on burrow i, will correspond to xi,.  {0,1}. If 
we denote the probability of occupancy of the burrow y, 
the probability of visual detection pV, and the probability 
of playback response pR, the likelihood of all four possible 
outcomes is given in Table 1.The total likelihood of the data 
X is therefore:

L X p p p x p x

p x p
S R i
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Note that for this to be true, we must make the following 
biological assumptions. First, we assume that each burrow 
can only be occupied by a single individual (or pair). Second, 
we assume independence of the two detection methods: in 
other words, visual inspection does not affect the probability 
of response nor vice-versa. In order to ensure this is fulfilled, 
it is recommendable to use the potentially more disturbing 
method last (e.g. playback should be done after visual inspec-
tion, to ensure birds do not change their behaviour in ways 
that affect their visibility). Third, it assumes that unoccu-
pied burrows represent the absence of a breeding bird, rather 
than a temporary absence (e.g. to forage). To ensure this, it is 
important to time the sampling during the appropriate stage 
in the breeding cycle and during the animal’s inactive period 
of the day, which will depend on the target species (e.g. at 
night for P. bailloni and P. pacificus). The latter assumption 

Table 1. Likelihood of each possible data scenario in a single spe-
cies case (Y: probability of occupancy; pV: probability of visual 
detection; pR: probability of playback response).

Scenario
Data  
xi,.

Likelihood 
L(xi,.|y,pV,pR )Sighting Response

Yes Yes {1,1} y pV pR

Yes No {1,0} y pV (12pR)
No Yes {0,1} y (12pV)pR

No No {0,0} y (12pV) (12pR)(12y)
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can be relaxed by the use of repeated observations through 
time. Note that the illustrated estimate refers to the number 
of burrows that are occupied at the time of sampling. While 
burrow occupation of non-breeding individuals is rare, the 
tropical shearwater is known to breed throughout the year, 
and thus a proper breeding census would require including 
samples throughout the year, rather than a single time point 
as in our example.

The estimation of parameters y, pS, and pR, can proceed 
by maximum likelihood or Bayesian methods. For the latter, 
it will be necessary to define priors. Since all three parameters 
are probabilities we will use a uniform distribution bounded 
between 0 and 1 as recommended in Royle and Dorazio 
(2008). The total number of individuals in a sampling unit 
can be estimated as N m ψ .

Simulated datasets and performance comparison

In order to evaluate the performance of both maximum 
likelihood and Bayesian methods, we simulated a series of 
datasets. All datasets represented a plot with 30 burrows 
(representative of the number of burrows found in a typical 
plot for the shearwater case study described below). Data 
was generated using binomial trials for three-way combina-
tions of the following parameter values. For both detection 
probabilities pV and pR, we used {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 
0.7, 0.8, 0.9}. The occupancy probabilities y used were {0.1, 
0.3, 0.5, 0.7, 0.9}. For each combination, we performed a 
total of 20 simulations.

Maximum likelihood estimation was performed in pro-
gram R 3.1.2 (R Core Team), using function mle2 in package 
bbmle (Bolker 2014). Bayesian estimation was implemented 
in JAGS 3.4.0 (Plummer 2003). As uninformative priors for 
all parameters (y, pV , pR) we used a uniform distribution 
from 0 to 1. For each estimation we ran 2000 chains with a 
burnin of 500.

We evaluated the performance of the estimation by 
calculating the average error and bias in estimating the total 
number of occupied burrows, the most likely measure of 
interest. As a measure of error we used the root mean squared 
error (RMSE):

RMSE
N N

n
=

−( ) 2

	 (4)

where N is the known population size, N  is its estimate, 
and n is the expected number of occupied burrows (number 
of burrows  poc). The results are presented in standardized 
units by subtracting the mean RMSE for a given parameter 
combination and dividing by its standard deviation (Fig. 1).

We calculated relative bias as the proportional difference 

between estimated and known population size 
( )N N

N

 −
.

Models performed better when the probability of occu-
pancy increased, both in terms of bias (Fig. 1) and error  
(Fig. 2). This is because higher occupancies imply larger sam-
ple sizes to estimate detection probabilities. Only plots with 
y  0.1 (an average of 3 out of 30 occupied burrows) showed 
considerable levels of error and bias. Expectedly, the models 
also performed better when the probabilities of detection 
increased. Note that the two probabilities of detection (here 
visual detection and response to a playback call) are math-
ematically interchangeable in the simulation. The likelihood 
framework performed better under low occupancy rates and 
very different detection probabilities among both methods 
(e.g. the probability of visual detection being high and the 
probability of response being low).

Extension to two species

It is not uncommon for burrows and other types of refuge 
to be suitable for more than one species. In the example of 

Figure 1. Standardized root mean squared error (RMSE) of estimates of population size for maximum likelihood and Bayesian estimation 
for the simulated plots under a variety of parameters.
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Island (Seychelles) with two breeding shearwaters: the 
wedge-tailed Puffinus pacificus and tropical shearwater  
P. bailloni. Aride Island Nature Reserve comprises 73 ha 
and is suspected to harbor the largest colony of P. bailloni 
in the world (Rocamora and Skerrett 2001). Both spe-
cies breed in the same type of natural burrow on the hill-
sides of the island. While P. pacificus is a seasonal breeder  
found mainly from September to February, P. bailloni  
has no clear breeding season in Seychelles, and incubat-
ing birds may be found all year round (Skerrett et  al.  
2001).

To carry out the sampling analysed here, we followed the 
playback census protocol described in Betts (1998). In each 
plot, we noted all potentially suitable burrows (between 1 
and 38 burrows per plot, 267 in total) and inspected them 
visually with a head torch for the presence of a nesting bird 
of either species. We played recorded male–female duet 
calls for both species (Rocamora et  al. 2000) in the case 
of unknown content, and for the observed species when 
the bird was visible. We played the call at the opening of 
the burrow and noted whether the bird responded by the 
end of the recordings (1:24 min for P. bailloni and, 1.58 for  
P. pacificus).

a two-species scenario where the burrow can be occupied 
by either species A or B alternately it is straightforward to 
extend the model. We do so by assuming species-specific 
occupancies (yA, yB) and detection probabilities (pVA, pVB, 
pRA, pRB). If we assume that it is only possible to find an 
individual (or pair) of one or the other species (not both), 
we need to constrain the model so that yA  yB  1. Table 
2 specifies the likelihood for all possible data outcomes. Note 
that in this case, the way to code the data is similar to the 
one-species case, but with 1 or 2 representing detection of 
species A or B respectively. For example, if species B is seen 
but not heard in burrow i, xi  {2, 0}. The total data like-
lihood is again the product of likelihoods for all burrows. 
Table A3 in the Supplementary material Appendix 1 shows 
the results of simulations to evaluate the performance of the 
two-species model under a Bayesian framework, applied in 
the case-study below.

Case study: estimating shearwater densities on aride 
island

We here present the application of the two-species model 
to the estimation of the size of a mixed colony on Aride 

Figure 2. Relative bias of estimates of population size for maximum likelihood and Bayesian estimation for the simulated plots under a 
variety of parameters.

Table 2. Likelihood for all possible scenarios in a 2 species case. YA (resp. YB): probability of occupancy by species A (resp. B); pVA (resp. 
pVB): probability of visual detection of species A (resp. B); pRA (resp. pRB): probability of playback response of species A (resp. B).

Scenario
Data
Xi,.

Likelihood
L(xi,.| pocA, pocB, pVA, pVB, pRA, pRBSighting Response Species

Yes Yes A {1,1} yA pVA pRA

Yes No A {1,0} yA pVA (12pRA)
No Yes A {0,1} yA (12pVA) pRA

Yes Yes B {2,2} yB pVB pRB

Yes No B {2,0} yB pVB (12pRB)
No Yes B {0,2} yB (12pVB) pRB

No No {0,0} yA (12pVA)(12pRA) yB (12pVB)(12pRB)(12yA2yB)
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We evaluated the importance of heterogeneity in detec-
tion probabilities by comparing models that differed on 
whether the detection probabilities (pVA, pVB, pVA, pVB) were 
fixed or randomly (logit-normally) varying across plots. 
As a measure of model performance we used the devi-
ance information criterion, DIC (Spiegelhalter et al. 2002; 
Supplementary material Appendix 1, Table A1).

Parameters were estimated using a Bayesian framework. 
We specified the following uninformative parameter priors 
for the random variables:

N (0,10)
Unif (0,10)

When probabilities were set as constant across plots, we 
used a uniform prior ranging from 0 to 1.

We ran three independent MCMC chains with 10 000 
iterations each, a burnin of 5000 and thinning of every 10 
samples. Convergence was considered achieved when the 
Gelman–Rubin statistic (Gelman and Rubin 1992) for all 
parameters was lower than 1.1.

Although P. bailloni is a year-round breeder, in this 
illustrative application, we did only one round of sampling 
for both species, in November 2011. We surveyed 19 circu-
lar plots of 100 m2 randomly selected in 1996 for a previous 
survey (Betts 1998). All surveys occurred at night between 
20:00 h and 23:00 h once every sampling month.

We used the two-species model specified above to esti-
mate the average number of occupied burrows per unit 
area by dividing the average number of occupied burrows 
per plot by the area of a plot (100 m2). This number was 
then multiplied by the area of suitable habitat on the island 
(51 100 m2) to estimate the densities of shearwaters on 
the island. In order to account for plot-variation in occu-
pancy and produce estimates of average island densities, 
we modelled species-specific occupancy probabilities y 
as a random effect. That is, rather than estimating plot-
specific occupancy probabilities, given plot i and species 
S the probabilities of occurrence followed a logit-normal 
distribution:

logitS, i NS,S

Figure 3. Histograms of estimated probabilities of sighting pV, probabilities of response pR and number of occupied burrows for the  
19 sampled plots.
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Our formulation bears some implicit assumptions to 
be considered when interpreting the density estimates. 
The first one is that all birds are present in their burrow at 
the time of the survey. If individuals are absent foraging at 
the time of sampling, or their breeding attempt has ended 
before sampling, they will not be accounted for. This prob-
lem is minimized during egg-laying, incubation, or chick 
brooding, when at least one bird (one of the adults or the 
chick) stays behind in the burrow at all times. If this issue, 
however, is deemed important for the species at hand, the 
design can be extended to performing multiple visits per 
burrow in an analogous way to Nichols et  al. (2008). In 
the case of shearwaters, performing the surveys at night, 
when birds return to their burrows can minimize the risk 
of sampling when individuals are absent. Moreover, the 
subset of data we analyze in this article represents a single 
snapshot of the population in time. Estimation of the year-
round population size would require sampling at differ-
ent times of the year. Design considerations such as how 
often to sample in order to have a representative sample of 
breeding attempts will depend on the biological details of 
the species. In our case, this will be particularly important 
for P. bailloni, which breeds year round. A second impor-
tant assumption is that both detection methods (visual 
and playback) are independent of each other (i.e. the use 
of one does not affect the other). In our case, we decided 
to always first inspect burrows before playing the call, in 
order to avoid the call affecting the activity level, and thus 
visibility, of the bird. Finally, our model also assumes an 
accurate count of burrows per unit area, which we believe 
is justifiable given the terrain and dimensions of our plots. 
However, surveys in areas of more difficult access might 
require the explicit incorporation of burrow count error 
through repeated measurements.

Extensions of the model may be developed to adapt to the 
idiosyncrasies of different species and surveys. For example, 
while uncommon in our study, burrows may be occupied 
by more than one individual, potentially requiring detection 
probabilities to be modeled as dependant on the number of 
individuals present.

Other possible extensions to the method include modeling 
the dependence of occupancy or detection probabilities on 
habitat characteristics (e.g. soil depth, aspect, etc.), as has 
been done in studies with a single detection method (Pearson 
et al. 2013, Oppel et al. 2014). This may be important to 
yield reliable predictions at larger scales that include a variety 
of environments.

Although we have illustrated an application to the study 
of shearwaters, the method we outline is applicable to any 
cavity-dwelling species that may be sampled non-invasively 
using two detection methods. This may include, not only a 
variety of burrow-nesting birds such as shearwaters, petrels, 
penguins or burrowing owls, for which playback detection 
is commonly used (Haug and Didiuk 1993, Jouventin and 
Aubin 2002, Conway et al. 2008); but also a variety of other 
animals like den-living mammals and burrowing crabs or 
spiders. For example, den occupancy might be estimated 
using a combination of camera traps and the presence of 
tracks. Populations of burrowing crabs or spiders might be 
estimated with a combination of visual burrow inspection 

Results

Simulated datasets and performance comparison

Figure 1 and 2 show the standardized root mean squared 
error (RMSE) and bias, respectively, for the estimation of 
shearwater densities in the simulated plots. Models per-
formed better when the probability of occupancy increased, 
both in terms of error (Fig. 1) and bias (Fig. 2). This is 
because higher occupancies imply larger sample sizes to 
estimate detection probabilities. Only plots with y  0.1 
(and therefore an average of 3 out of 30 occupied burrows) 
showed considerable levels of error and bias. As expected, 
the models also performed better when the probabilities 
of detection increased. Note that the two probabilities of 
detection are interchangeable. The Bayesian framework per-
formed worse under low occupancy rates and very different 
detection probabilities among both methods (i.e. one being 
high and the other low).

Case study: estimating shearwater densities on aride 
island

Table 3 shows the performance of two-species shearwater 
models varying in assumptions of detection heterogeneity. 
The model with heterogeneity in all probabilities of detec-
tion was clearly superior (ΔDIC  24.08). The parameter 
estimates using the best model are shown in Table 4.

Total population sizes were estimated at 25 550 pairs 
(95% CI: 23 667–28 777) for P. bailloni and 13 716 pairs 
(12 909–15 874) for P. pacificus. This is considerably lower 
than previous estimates using a correction factor approach, 
particularly for the P. bailloni (estimated at 98 000 pairs in 
2006–2007, Sampson and Sampson 2007). However, it is 
important to note that previous estimates were obtained 
using correction factors rather than the statistical method we 
here propose.

Discussion

We have described a simple statistical framework to estimate 
the abundance of cavity-dwelling species when cavities are 
easy to detect and count. In these species, abundance esti-
mation reduces to a problem of occupancy, where the key 
quantity to estimate is the probability of an individual (or 
breeding pair) being present in the cavity. This is analogous 
to the estimation of species occurrence in occupancy models 
(MacKenzie et al. 2005).

While species occupancy models typically use multiple 
site visits and a single detection method to estimate detec-
tion probabilities, some studies have extended them to 
incorporate multiple detection methods (Coggins et  al. 
2014). Nichols et al. (2008) provide a general framework for 
analysing multiple-method data on species occurrence. The 
method we presented is closely related to the special case of 
single site visits, yet applied to the estimation of abundance, 
rather than presence, when the species inhabits discrete units 
such as burrows and can be extended to other cavity-dwelling 
species.
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and luring the animal, or checking whether a piece of lint 
placed in the entrance is destroyed, as illustrated by Pombo 
and Turra (2013).

One advantage of our proposed method is that it does 
not require destructive sampling to yield reliable estimates 
of burrow occupancy. Destructive methods such as burrow 
excavation have been used to calibrate imperfect methods of 
detection (Lawton et al. 2006, Newman et al. 2009 for sea-
birds; Pombo and Turra 2013 for crabs). These approaches 
raise ethical and conservation issues. Simultaneous use of 
two imperfect methods allows the estimation of occupancy 
without the need to ascertain it destructively.

Accurately representing uncertainty in our estimates 
of species population densities is of central importance to 
effective and sustainable management (Ludwig et al. 1993). 
This is the main advantage of our proposed method over 
other methods used to estimate densities of cavity-dwelling 
species. While these other methods aim to account for 
detection bias through application of correction factors, they 
do not calculate the uncertainty caused by imperfect detec-
tion (James and Robertson 1985, Warham 1996, Ratcliffe 
et  al. 1998, Gusset and Burgener 2005, Scott et  al. 2009, 
Oppel et  al. 2014). Moreover, they do not account for  
possible spatial heterogeneity in the probabilities of detec-
tion. Conway et  al. (2008), for example, showed that the 
detection of burrowing owls (visual and playback response) 
depends on factors such as ambient temperature. In our 
application, the best models for both species incorporated 
variation in both visual and acoustic detection probabilities. 
The problem of correction and calibration factors extends 
beyond studies of burrow occupancy. Gopalaswamy et  al. 
(2015) showed that using ad hoc calibration indexes relat-
ing track-counts to camera-trap-based population estimates 
resulted in a deceptive overestimation of Indian tiger recov-
ery. This highlights the importance of jointly estimating 
observation and occurrence in our estimation of animal 
abundances.
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